MARK SCHEME for the October/November 2014 series

0654 CO-ORDINATED SCIENCES

0654/33 Paper 3 (Extended Theory), maximum raw mark 120

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0654	33

1 (a) variation; adaptation ;
survive ;
selection;
(b) (i) (in 1980) no (significant) difference ; (in 2010) higher in country A/ORA ;
(ii) mutation produces resistant variety ;
some bacteria more resistant than others/some bacteria are resistant ;
antibiotics in (frequent) use ;
resistant bacteria more likely to survive / natural selection/ORA ; and reproduce to pass on this resistance ;
(iii) more/incorrect antibiotic use in country A/ORA ;
[Total: 10]

2 (a) (i) $3000(\mathrm{~W})$ shown;
$=\frac{3000}{250}(=12 \mathrm{~A})$;
(ii) (resistance $=) \frac{\text { voltage }}{\text { current }}$;
$\frac{250}{12}=20.8$ or 21 ;
Ω;
(b) (i) (larger current so) wire moves (upwards) higher/quicker/with more force ;
(ii) (current reversed so) wire moves downwards/direction reverses/force acts downwards;

3 (a) (i) 1(\%);
(ii) any noble gas;
(b) (i) $24 \mathrm{dm}^{3}$;
(ii) reference to the idea that 1 mole of any gas at room temperature and pressure has a volume of $24 \mathrm{dm}^{3} / 1$ mole of any gas under same conditions occupies the same volume;
(iii) nitrogen has lower/different mass/lower density ;

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0654	33

(c) (i) fractional distillation;
(ii) hydrocarbon/named alkane/petroleum/water ;
(iii) $1000 \div 17=58.8(24)$ or 59 ;
$58.8 \div 2=29.4(12)$;
$\mathrm{M}_{\mathrm{r}} \mathrm{N}_{2}=28$;
$29.4 \times 28=823.2 \mathrm{~g}$ (unit required);

4 (a) (i) (positive acceleration: driving force is greater than air resistance $O R$ negative acceleration: driving force is less than air resistance) there is a resultant/net force/sum of forces is not zero;
(ii) (force $=$) mass \times acceleration;
acceleration $=3.5\left(\mathrm{~m} / \mathrm{s}^{2}\right)$;
$=1200 \times(3.5)=4200(\mathrm{~N}) ;$
(iii) $(\mathrm{KE}=)^{1 / 2} \mathrm{mv}^{2}$;
initial $K E=153600$ and final $K E=540000(\mathrm{~J})$;
difference $=540000-153600=386400(\mathrm{~J})$;
(b) mirror drawn at suitable angle ;

ray of light drawn from car \mathbf{B} reflects off mirror to car \mathbf{A} indicated by arrow; angles between rays and mirror approximately correct ;
(c) engine vibration causes air particles to vibrate ; energy/vibrations passed from particle to particle ; compressions and rarefactions ;

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0654	33

5 (a) as an energy source;
(b) oxygen;
(c) $6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2}$
formulae ; balancing ;
(d) (i)

straight line for first part of graph ;
levelling off at higher intensity ;
(ii) (at low) more light means more energy available/more light energy speeds up rate ;
(at very high) not enough CO_{2} /plant photosynthesising as fast as it can/another limiting factor/limiting factor ;
(e) temperature;
CO_{2} concentration ;
wavelength/frequency/colour of light ;
rainfall/water/humidity ;
lack of magnesium ;
(f) (i) chlorophyll ;
(ii) to absorb the light/energy ;

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0654	33

6 (a)

element	physical state at $20^{\circ} \mathrm{C}$	colour	formula of molecules
chlorine	gas	(pale green)	$\mathbf{C l}_{2}$
bromine	(liquid)	orange / brown	Br_{2}
iodine	solid / crystals	dark grey / black	$\left(\mathrm{I}_{2}\right)$

(1 mark for each correct column)
(b) chlorine + sodium iodide \rightarrow iodine + sodium chloride ;
(c) become ill/be poisoned/might die ;
because harmful microorganisms would not be killed ;
(d) $2 \mathrm{~F}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{O}_{2}+4 \mathrm{HF}$ formulae ; balanced ;

7 (a) V = testis;
W = ovum/egg;
(b) fertilisation;
(c) at $Y=$ mitosis;
at $\mathbf{Z}=$ meiosis ;
(d) $\mathbf{W}=23$;
embryo $=46$;
[Total: 7]

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0654	33

8 (a) (i) 68(W);
(ii) working for \mathbf{A} OR B ;
$\mathbf{A}=25 \%$ and $\mathbf{B}=3.75 \%$;
(iii) \mathbf{A} is more efficient than $\mathbf{B} /$ less energy consumed;
valid environmental statement e.g. less fossil fuels burned/non-renewable resources used/less CO_{2} released ;
(b) nuclear ;
kinetic ;
(c) (i) time taken for half the atoms/nuclei to decay/time for radioactivity to fall to half ;
(ii) β particles and γ wave ;
β more ionising ;
β less penetrating ;
β has charge and γ has no charge ;
β has mass and γ has no mass;

9 (a) (i) with ethane no colour change/stays orange; with ethene orange solution becomes colourless ;
(ii) x is 4 ;
y is 8 ;
alkenes ;
(b) (i) polymerisation;
addition (polymerisation) ;
(ii) poly(ethene);
(iii) carbon dioxide ;
water ;

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0654	33

10 (a) (i) $\mathrm{X}=$ pulmonary vein;
$Y=$ right atrium ;
(ii)

correct arrow on \mathbf{P};
correct arrow on \mathbf{Q};
(iii) blood flows twice through the heart (for each complete circuit) ;
through lungs, then through body tissues/v.v. ;
idea of separate oxygenated and deoxygenated blood ;
(iv) blood has less far to travel/flows through fewer capillaries/organs; right (ventricle of) heart has less muscle ;
(b) (i) artery;
(ii) surge of blood/pressure into the vessel ;
vessel wall stretches (and recoils) with each beat ;
(iii) more blood to muscles ;
so more oxygen/glucose ;
removes more CO_{2};
increased respiration ;
increased energy released;

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0654	33

11 (a) (i) poor (heat) conductor/idea of heat not passing through handle;
(ii) shiny/silver surface poor heat emitter ;
(b) (in base of saucepan)
increased particle movement/vibration/kinetic energy ;
energy transferred by collision, vibration/energy, passed from particle to particle ;
(in water)
water particles move further apart ;
less dense water rises ;
(c) (pressure $=) \frac{\text { force }}{\text { area }}$;
$=\frac{15}{300}=0.05\left(\mathrm{~N} / \mathrm{cm}^{2}\right) ;$
(d) (c $=$) $\frac{\mathrm{H}}{\mathrm{m} \theta}$ or $\frac{\mathrm{H}}{\mathrm{m} \Delta \mathrm{T}}$;
$\frac{63000}{(0.5 \times 30)}$;
$=4200\left(\mathrm{~J} / \mathrm{kg}{ }^{\circ} \mathrm{C}\right)$;

12 (a) transition metals have high density;
transition metals (and compounds) can act as catalysts ;
transition metals (often) form coloured compounds ;
transition metals have high melting/boiling points ;
reference to variable oxidation states/valency ;
(b) (i) (26)
same as proton number ;
(ii) 3 ;
same as Group number ;
electrons arranged in $2,8,3$;
(c) (i) aluminium atom $/ \mathrm{Al}$;
becomes a positive ion ;
(aluminium atoms) lose electrons (when they ionise)/electron loss is oxidation/electrons transferred to iron (ions)/oilrig explained ;

Page 9	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0654	33

(ii) less;
reaction is exothermic ;
chemical energy in reactants has been transferred to surroundings/changed to thermal energy (and so less in products) ;

